Application prestarting for application
developers

Alexey Shilov (alexey.shilov@nokia.com), Jussi Lind (jussi.lind@nokia.com)

February 16, 2010

1 Introduction to prestarting

If the start-up time of a DUI application is way too long it can be prestarted
at the boot time. This means that it can be started and initialized on the
background without showing the UI, so from user point of view it’s not running.

Launching of prestarted application is very fast from the user’s perspective,
it takes less than 1 second, because it’s only a matter of showing the UIL. Ap-
plications in prestarted state consume memory so not all applications can be
prestarted, but just selected, time-critical ones like the Camera UI.

An application can be prestarted only if it explicitly supports prestarted
mode. Prestarting and normal launching of an application can be distinguished
from the command line arguments: -prestart argument is provided when only
prestarting is wanted. This should start the application without UI being shown.

Technically, an application in prestarted state runs in the Qt main loop, but
its window is hidden by DUI framework (DuiApplicationWindow: :show() does
nothing in the prestarted mode). Application should avoid any use of CPU re-
sources when it’s in the prestarted state. When user initiates (via D-Bus) launch
of the prestated application, the framework notifies the application that it must
become visible and by default the application window will be automatically
shown.

2 Overview of the prestart API

The prestart API offers two ways to get the notifications:
e Qt signals:

— Duilpplication: :prestartReleased()
— DuiApplication: :prestartRestored()

e Virtual handlers that user can override in her application class derived
from DuiApplication:

— void DuiApplication::releasePrestart ()

— void DuiApplication::restorePrestart ()

There are two ways how prestarted applications can handle close event which
can be caused by user pressing the close (or back) button or someone calling
the close method of the D-Bus interface:

e Exit normally

e Return to the prestarted state ("lazy shutdown")

In the "lazy shutdown" mode the application never really exits, it just hides
the UI, stops and resets all activites and returns to the prestarted state. In the
device, there’s a dedicated Application Life-cycle Daemon, applifed, that takes
care of prestarting and re-prestarting the applications. So, if a application exits
or crashes it will be re-prestarted by applifed. Prestarted applications commu-
nicate with applifed via D-Bus service so that daemon knows what applications
are currently in prestarted state. This happens behind the scenes.

Note: An application will not be re-prestarted if it wasn’t relased at all.
This effectively prevents a loop where applifed would re-prestart an application
that crashes before it can be even shown.

Currently, only single window applications should be prestarted, since multi-
window applications are not officially supported. They can still be dealt with
the handler API.

User may mix the signal and handler -based API’s freely. The signals will
always be emitted. The signal -based API might be easier and faster to use, but
handlers give more control and forces the use of an object oriented model.

3 How to enable prestarting

e CallDuiApplication: :setPrestartMode(Dui: :PrestartMode mode) with
Dui::LazyShutdown or Dui::TerminateOnClose parameter in applica-
tion’s main() function to notify framework how application is going to
handle close event.

Note: if application is registered to applifed daemon and it doesn’t call
setPrestartMode (), the application will be started at boot time but it
will appear on screen immediately. In other words, prestarting will be
ignored without the mode being set.

e Application can check if it’s in prestarted mode by calling DuiApplication: :isPrestarted()
method.

e Application will receive DuiApplication: :prestartReleased() signal
and Duilpplication::releasePrestart () -handler will be called when
the application is released from the prestarted state. The application
should start its runtime activities only after having received this signal.
The application window is shown automatically.

e [fapplication supports LazyShutdown, it will receive DuiApplication: :prestartRestored()
signal and DuiApplication: :releasePrestart () -handler will be called
when the application is returned to the prestarted state. The application
should stop all its activity and reset its content so that the user won’t no-
tice a difference between a fresh launch and a lazy shutdowned application
being released again.

e If you are sub-classing DuiApplicationService, you must call the base class
implementations of ApplicationService: :launch(), ApplicationService: :close()
and ApplicationService: :exit() methods at the end of the possible re-
implementations, otherwise prestarting functionality will be broken.

Note: prestarted applications are not supposed to have more than one
instance.

e In order to get the application prestarted during the boot, there should
be a special control file in /etc/prestart directory. Applifed then reads
these files and prestarts the applications at some point.

Example of the contents of a .prestart -file:

This defines the prestartable application service
Service=com.nokia.myapp

(There’s also an up-to-date example /etc/prestart/example.prestart.ex.
This file comes with the applifed package.)

Note: at this point it’s not clear who should install and maintain the
.prestart files. It might be possible that only applifed could install these
files for predefined applications. This is just to prevent random third-party
applications from prestarting.

e Developer also needs to add -prestart to the .service file:

Example from a .service -file:

-- clip --
Exec=/usr/bin/myapp -prestart

-- clip --

This way the "normal" D-Bus launch (DuiApplicationService::launch())
will first prestart the application and immediately release it when it’s
ready. On the contrary, Applifed won’t call DuiApplicationService::launch()
so the application will be left in the prestarted state waiting for a release.

4 How to test prestarting

A developer can test the prestart functionality by starting the application with
-prestart argument from the command line and then normally launch the ap-
plication from Home Screen’s application grid or with some simple helper pro-
gram (e.g. dbus-send) that straightly calls the DuiApplicationService’s launch()
method of the desired service.

Note that the prestarted application must be in the same session bus with
Home Screen when launching it from the application grid. Otherwise a new
copy of the application will be launched. When working in a terminal, this can
be ensured by:

$ source /tmp/session_bus_address.user

5 Code examples

Learning by example is always efficient. Here are a couple of example codes
demonstrating how to use the prestart API. These programs are not complete
so they cannot be compiled without some extra code.

Example of main() -function of application that supports TerminateOnClose
-prestarting using Qt signals:

int main(int argc, char *x argv)

{
Duilpplication app(argc, argv);
// Use the LazyShutdown mode
Duilpplication::setPrestartMode (Dui: :TerminateOnClose) ;
DuiApplicationWindow window;
window.show() ;
MainPage mainPage;
mainPage.appearNow() ;
// Run activateWidgets() here to setup things
// if app is NOT prestarted, otherwise
// connect it to prestartReleased() -signal
// from Duilpplication so that it’s run
// at the time when the window is really being shown to the user.
if (lapp.isPrestarted()) {
mainPage.activateWidgets();
}
else {
app.connect (&app, SIGNAL(prestartReleased()),
&mainPage, SLOT(activateWidgets()));
}
return app.exec();
}

Example of main() -function of application that supports LazyShutdown
-prestarting using Qt signals :

int main(int argc, char ** argv)

Duilpplication app(argc, argv);

// Use the LazyShutdown mode
DuiApplication::setPrestartMode (Dui: :LazyShutdown) ;

DuiApplicationWindow window;
window.show() ;

MainPage mainPage;
mainPage.appearNow() ;

// Run activateWidgets() here to setup things

// if app is NOT prestarted, otherwise

// connect it to prestartReleased() -signal

// from DuiApplication so that it’s run

// at the time when the window is really being shown to the user.

if (lapp.isPrestarted()) {
mainPage.activateWidgets();

}
else {
app.connect (&app, SIGNAL(prestartReleased()),
&mainPage, SLOT(activateWidgets()));
// Stop and reset widgets when returning to the prestarted state
app.connect (&app, SIGNAL(prestartRestored()),
&mainPage, SLOT(deactivateAndResetWidgets()));
}

return app.exec();

Example of application that supports LazyShutdown -prestarting using vir-
tual handlers :

class MyApplication : public DuiApplication

{
Q_0BJECT

public:
MyApplication(int argc, char ** argv);
~MyApplication();

//! Re-implementation
virtual void releasePrestart();

//' Re-implementation
virtual void restorePrestart();

private:

//' Main window
DuilApplicationWindow * m_window;

//' DuilpplicationPage -derived page
MainPage * m_page;

};

MyApplication: :MyApplication(int argc, char ** argv)
DuilApplication(argc, argv)

{
// Use the LazyShutdown mode
setPrestartMode (Dui: :LazyShutdown) ;

m_window = new DuiApplicationWindow;
m_window->show() ;

m_page = new DuiApplicationPage;
m_page->appearNow() ;

// Run activateWidgets() here to setup things
// if app is NOT prestarted, otherwise it will be called
// from the handler method.

if (lisPrestarted()) {
m_page->activateWidgets() ;
}
}

void MyApplication::releasePrestart()

// Your stuff here
m_page->activateWidgets();

// Call the default implementation to show the window.
DuiApplication::releasePrestart();

}

void MyApplication::restorePrestart()

{
// Your stuff here
m_page->deactivateAndResetWidgets();
// Call the default implementation to hide the window.
DuiApplication: :restorePrestart();

}

MyApplication: :~MyApplication()
{

delete m_window;
delete m_page;

}
int main(int argc, char *x argv)
{
MyApplication app(argc, argv);
return app.exec();
}

Full version of lifecycle application that supports prestarting via signals can
be found in ’examples’ directory of libdui package.

