
Appli
ation prestarting for appli
ation

developers

Alexey Shilov (alexey.shilov�nokia.
om), Jussi Lind (jussi.lind�nokia.
om)

February 16, 2010

1 Introdu
tion to prestarting

If the start-up time of a DUI appli
ation is way too long it
an be prestarted

at the boot time. This means that it
an be started and initialized on the

ba
kground without showing the UI, so from user point of view it's not running.

Laun
hing of prestarted appli
ation is very fast from the user's perspe
tive,

it takes less than 1 se
ond, be
ause it's only a matter of showing the UI. Ap-

pli
ations in prestarted state
onsume memory so not all appli
ations
an be

prestarted, but just sele
ted, time-
riti
al ones like the Camera UI.

An appli
ation
an be prestarted only if it expli
itly supports prestarted

mode. Prestarting and normal laun
hing of an appli
ation
an be distinguished

from the
ommand line arguments: -prestart argument is provided when only

prestarting is wanted. This should start the appli
ation without UI being shown.

Te
hni
ally, an appli
ation in prestarted state runs in the Qt main loop, but

its window is hidden by DUI framework (DuiAppli
ationWindow::show() does

nothing in the prestarted mode). Appli
ation should avoid any use of CPU re-

sour
es when it's in the prestarted state. When user initiates (via D-Bus) laun
h

of the prestated appli
ation, the framework noti�es the appli
ation that it must

be
ome visible and by default the appli
ation window will be automati
ally

shown.

2 Overview of the prestart API

The prestart API o�ers two ways to get the noti�
ations:

• Qt signals:

� DuiAppli
ation::prestartReleased()

� DuiAppli
ation::prestartRestored()

• Virtual handlers that user
an override in her appli
ation
lass derived

from DuiAppli
ation:

� void DuiAppli
ation::releasePrestart()

� void DuiAppli
ation::restorePrestart()

1

There are two ways how prestarted appli
ations
an handle
lose event whi
h

an be
aused by user pressing the
lose (or ba
k) button or someone
alling

the
lose method of the D-Bus interfa
e:

• Exit normally

• Return to the prestarted state ("lazy shutdown")

In the "lazy shutdown" mode the appli
ation never really exits, it just hides

the UI, stops and resets all a
tivites and returns to the prestarted state. In the

devi
e, there's a dedi
ated Appli
ation Life-
y
le Daemon, applifed, that takes

are of prestarting and re-prestarting the appli
ations. So, if a appli
ation exits

or
rashes it will be re-prestarted by applifed. Prestarted appli
ations
ommu-

ni
ate with applifed via D-Bus servi
e so that daemon knows what appli
ations

are
urrently in prestarted state. This happens behind the s
enes.

Note: An appli
ation will not be re-prestarted if it wasn't relased at all.

This e�e
tively prevents a loop where applifed would re-prestart an appli
ation

that
rashes before it
an be even shown.

Currently, only single window appli
ations should be prestarted, sin
e multi-

window appli
ations are not o�
ially supported. They
an still be dealt with

the handler API.

User may mix the signal and handler -based API's freely. The signals will

always be emitted. The signal -based API might be easier and faster to use, but

handlers give more
ontrol and for
es the use of an obje
t oriented model.

3 How to enable prestarting

• Call DuiAppli
ation::setPrestartMode(Dui::PrestartMode mode) with

Dui::LazyShutdown or Dui::TerminateOnClose parameter in appli
a-

tion's main() fun
tion to notify framework how appli
ation is going to

handle
lose event.

Note: if appli
ation is registered to applifed daemon and it doesn't
all

setPrestartMode(), the appli
ation will be started at boot time but it

will appear on s
reen immediately. In other words, prestarting will be

ignored without the mode being set.

• Appli
ation
an
he
k if it's in prestarted mode by
alling DuiAppli
ation::isPrestarted()

method.

• Appli
ation will re
eive DuiAppli
ation::prestartReleased() signal

and DuiAppli
ation::releasePrestart() -handler will be
alled when

the appli
ation is released from the prestarted state. The appli
ation

should start its runtime a
tivities only after having re
eived this signal.

The appli
ation window is shown automati
ally.

• If appli
ation supports LazyShutdown, it will re
eive DuiAppli
ation::prestartRestored()

signal and DuiAppli
ation::releasePrestart() -handler will be
alled

when the appli
ation is returned to the prestarted state. The appli
ation

should stop all its a
tivity and reset its
ontent so that the user won't no-

ti
e a di�eren
e between a fresh laun
h and a lazy shutdowned appli
ation

being released again.

2

• If you are sub-
lassing DuiAppli
ationServi
e, you must
all the base
lass

implementations of Appli
ationServi
e::laun
h(), Appli
ationServi
e::
lose()

and Appli
ationServi
e::exit() methods at the end of the possible re-

implementations, otherwise prestarting fun
tionality will be broken.

Note: prestarted appli
ations are not supposed to have more than one

instan
e.

• In order to get the appli
ation prestarted during the boot, there should

be a spe
ial
ontrol �le in /et
/prestart dire
tory. Applifed then reads

these �les and prestarts the appli
ations at some point.

Example of the
ontents of a .prestart -�le:

This defines the prestartable appli
ation servi
e

Servi
e=
om.nokia.myapp

(There's also an up-to-date example /et
/prestart/example.prestart.ex.

This �le
omes with the applifed pa
kage.)

Note: at this point it's not
lear who should install and maintain the

.prestart �les. It might be possible that only applifed
ould install these

�les for prede�ned appli
ations. This is just to prevent random third-party

appli
ations from prestarting.

• Developer also needs to add -prestart to the .servi
e �le:

Example from a .servi
e -�le:

--
lip --

Exe
=/usr/bin/myapp -prestart

--
lip --

This way the "normal" D-Bus laun
h (DuiAppli
ationServi
e::laun
h())

will �rst prestart the appli
ation and immediately release it when it's

ready. On the
ontrary, Applifed won't
all DuiAppli
ationServi
e::laun
h()

so the appli
ation will be left in the prestarted state waiting for a release.

4 How to test prestarting

A developer
an test the prestart fun
tionality by starting the appli
ation with

-prestart argument from the
ommand line and then normally laun
h the ap-

pli
ation from Home S
reen's appli
ation grid or with some simple helper pro-

gram (e.g. dbus-send) that straightly
alls the DuiAppli
ationServi
e's laun
h()

method of the desired servi
e.

3

Note that the prestarted appli
ation must be in the same session bus with

Home S
reen when laun
hing it from the appli
ation grid. Otherwise a new

opy of the appli
ation will be laun
hed. When working in a terminal, this
an

be ensured by:

$ sour
e /tmp/session_bus_address.user

5 Code examples

Learning by example is always e�
ient. Here are a
ouple of example
odes

demonstrating how to use the prestart API. These programs are not
omplete

so they
annot be
ompiled without some extra
ode.

Example of main() -fun
tion of appli
ation that supports TerminateOnClose

-prestarting using Qt signals:

int main(int arg
,
har ** argv)

{

DuiAppli
ation app(arg
, argv);

// Use the LazyShutdown mode

DuiAppli
ation::setPrestartMode(Dui::TerminateOnClose);

DuiAppli
ationWindow window;

window.show();

MainPage mainPage;

mainPage.appearNow();

// Run a
tivateWidgets() here to setup things

// if app is NOT prestarted, otherwise

//
onne
t it to prestartReleased() -signal

// from DuiAppli
ation so that it's run

// at the time when the window is really being shown to the user.

if (!app.isPrestarted()) {

mainPage.a
tivateWidgets();

}

else {

app.
onne
t(&app, SIGNAL(prestartReleased()),

&mainPage, SLOT(a
tivateWidgets()));

}

return app.exe
();

}

Example of main() -fun
tion of appli
ation that supports LazyShutdown

-prestarting using Qt signals :

int main(int arg
,
har ** argv)

4

{

DuiAppli
ation app(arg
, argv);

// Use the LazyShutdown mode

DuiAppli
ation::setPrestartMode(Dui::LazyShutdown);

DuiAppli
ationWindow window;

window.show();

MainPage mainPage;

mainPage.appearNow();

// Run a
tivateWidgets() here to setup things

// if app is NOT prestarted, otherwise

//
onne
t it to prestartReleased() -signal

// from DuiAppli
ation so that it's run

// at the time when the window is really being shown to the user.

if (!app.isPrestarted()) {

mainPage.a
tivateWidgets();

}

else {

app.
onne
t(&app, SIGNAL(prestartReleased()),

&mainPage, SLOT(a
tivateWidgets()));

// Stop and reset widgets when returning to the prestarted state

app.
onne
t(&app, SIGNAL(prestartRestored()),

&mainPage, SLOT(dea
tivateAndResetWidgets()));

}

return app.exe
();

}

Example of appli
ation that supports LazyShutdown -prestarting using vir-

tual handlers :

lass MyAppli
ation : publi
 DuiAppli
ation

{

Q_OBJECT

publi
:

MyAppli
ation(int arg
,
har ** argv);

~MyAppli
ation();

//! Re-implementation

virtual void releasePrestart();

//! Re-implementation

virtual void restorePrestart();

5

private:

//! Main window

DuiAppli
ationWindow * m_window;

//! DuiAppli
ationPage -derived page

MainPage * m_page;

};

MyAppli
ation::MyAppli
ation(int arg
,
har ** argv) :

DuiAppli
ation(arg
, argv)

{

// Use the LazyShutdown mode

setPrestartMode(Dui::LazyShutdown);

m_window = new DuiAppli
ationWindow;

m_window->show();

m_page = new DuiAppli
ationPage;

m_page->appearNow();

// Run a
tivateWidgets() here to setup things

// if app is NOT prestarted, otherwise it will be
alled

// from the handler method.

if (!isPrestarted()) {

m_page->a
tivateWidgets();

}

}

void MyAppli
ation::releasePrestart()

{

// Your stuff here

m_page->a
tivateWidgets();

// Call the default implementation to show the window.

DuiAppli
ation::releasePrestart();

}

void MyAppli
ation::restorePrestart()

{

// Your stuff here

m_page->dea
tivateAndResetWidgets();

// Call the default implementation to hide the window.

DuiAppli
ation::restorePrestart();

}

MyAppli
ation::~MyAppli
ation()

{

6

delete m_window;

delete m_page;

}

int main(int arg
,
har ** argv)

{

MyAppli
ation app(arg
, argv);

return app.exe
();

}

Full version of life
y
le appli
ation that supports prestarting via signals
an

be found in 'examples' dire
tory of libdui pa
kage.

7

